상세정보
미리보기
제조AI빅데이터 분석기법 (코딩편)
- 저자
- 김일중,김흥남,유승화,박준용,임성훈,신민수,권종원 공저
- 출판사
- 보민출판사
- 출판일
- 2024-05-07
- 등록일
- 2024-10-30
- 파일포맷
- PDF
- 파일크기
- 37MB
- 공급사
- YES24
- 지원기기
-
PC
PHONE
TABLET
웹뷰어
프로그램 수동설치
뷰어프로그램 설치 안내
책소개
제조데이터 표준, 품질확보 방법론,
제조데이터 유형별 현장공장 적용 AI 코딩의 필수 지침서!
전 세계적으로 화제를 불러일으키는 <제조데이터>, <제조AI>는 이미 제조기업의 지속 가능한 경쟁우위 달성을 위해 도입해야 할 핵심기술로 자리매김하고 있습니다. 지난 2020~2023년 약 3년간의 대한민국 제조생태계는 제조데이터, AI를 실제 우리 중소, 중견 제조현장에도 적용할 수 있을까에 대한 답과 가능성을 살펴본 해였던 것 같습니다. 이제 2024년부터는 기술의 지속 가능한 활용과 제조업 고도화 달성을 위해보다 치밀하고 체계적으로 제조데이터, AI 거버넌스를 바라볼 필요성이 존재합니다. 이 책 「제조AI빅데이터 분석기법(코딩편)」은 국내 제조기업이 제조데이터, AI를 기반으로 글로벌 제조스타를 향해 나아가는 과정에 실질적 로드맵과 적용방안을 제시하는 가이드라인입니다. 제조데이터 표준, 제조데이터 품질확보 방법론, 제조데이터 유형별(숫자, 이미지, 소리) 제조AI 개발 방법을 다루고 있으며 챕터별로 예제, 코딩실습, 퀴즈를 제공합니다. 제조업에 특화된 국내 최고 데이터 분석 책으로서의 다양한 이슈를 다루는 이 책 「제조AI빅데이터 분석기법(코딩편)」은 제조데이터, AI에 관심이 있는 학생, 제조업 종사자, 정부 정책결정자에 이르기까지 모두가 함께 학습할 수 있는 현장 중심형 책입니다. 자, 이제 책장을 넘겨보세요.
저자소개
경영정보시스템 박사. 현 한국과학기술원(KAIST), 제조AI빅데이터센터장 책임교수.
한국IT서비스학회, 첨단제조 전문위원장, 한국국방기술학회, 국방 제조AI 전문위원장.
인공지능 제조플랫폼(KAMP) 운영기관, 센터장, 중소벤처기업부, OECD 고위급 라운드테이블, 중소제조 협의위원, 대통령직속 4차산업혁명위원회, 중소벤처기업부 R&D 미래전략 라운드테이블, 자문위원, 삼성전자 상생협력아카데미 제조AI 강연, 세계경제포럼(다보스포럼) Lighthouse factory 국내 평가위원, 국내 중소 제조기업 AI 컨설팅 및 현장 적용 30회 이상 수행, 제조데이터, AI 관련 다수 SCI, KCI(DBpiaTop 5%) 논문 보유.
목차
저자 소개
제조AI빅데이터 분석기법(코딩편)을 읽는 분들께
챕터별 실습 제조AI데이터셋
Chapter 1. 제조AI 개관
1. 제조데이터 및 AI의 등장
2. 제조데이터 개관
2.1 제조데이터란?
2.2 제조AI데이터셋이란?
2.3 제조데이터 형태
2.4 제조데이터 품질 및 평가체계
2.5 제조데이터 표준
2.6 제조데이터 가격책정
3. 제조AI 개관
3.1 제조AI란?
3.2 지도학습과 비지도학습
3.3 제조AI 거버넌스 및 구성요소
3.4 제조AI 개발 및 적용의 과학적 수행절차
4. 제조데이터 및 AI 분석목적
4.1 기술적 제조데이터 및 AI 분석목적
4.2 경영 전략적 제조데이터 및 AI 분석목적
5. 제조데이터 및 AI 지능형 공장의 주요 성과지표
6. 빅블러 시대의 제조데이터 및 AI 싸이언티스트
- Quiz 확인문제
- 별첨 : 2023년 하노버 메세 한국팀 기사
- 인터뷰 : 스마트제조혁신추진단 안광현 단장
- 별첨 : KAMP 플랫폼 제조AI데이터셋 정리표
Chapter 2. 제조AI 개발환경 설정
1. 아나콘다(Anaconda) 설치
2. 주피터 노트북(Jupyter Notebook) 실행하기
3. 가상환경 만들기
4. 텐서플로우(TensorFlow) 설치하기
- Quiz 확인문제
Chapter 3. 제조AI 개발 맛보기
1. 화학물 제조공장 현장 문제 파악
2. 제조데이터 준비하기(KAMP 제조데이터 거래소)
2.1 양품 제조데이터 준비하기
2.2 불량 제조데이터 준비하기
3. 제조 AI 프로그램(K-최근접 이웃 알고리즘)
3.1 첫 제조AI 코딩 시작점
3.2 제조데이터 라벨링
3.3 훈련세트와 테스트세트 구축
3.4 제조AI 모델 생성, 예측
4. 전체 소스코드
- Quiz 확인문제
Chapter 4. 제조AI데이터 품질관리(전처리)
1. 제조AI데이터셋 품질관리 개요
2. 실습에 활용할 제조AI데이터셋 다운로드
3. ‘제조AI데이터셋 품질확보 방법론’ 실습
3.1 완전성 평가 및 확보
3.2 유효성 평가 및 확보
3.3 일관성 평가 및 확보
3.4 유일성 평가 및 확보
3.5 정확성 평가 및 확보
- Quiz 확인문제
Chapter 5. 숫자 제조데이터 기반 AI 개발
1. 사출성형 제조공장 현장 문제 파악
2. 사출성형 제조데이터 준비하기
3. 제조AI 프로그램(Random Forest)
3.1 제조데이터 불러오기
3.2 제조데이터 탐색하기(EDA, Exploratory Data Analysis)
3.3 제조데이터 전처리
3.4 제조AI 모델 생성 및 학습
3.5 정답(양품/불량) 예측하기
3.6 변수 중요도 확인하기
4. 전체 소스코드
- Quiz 확인문제
Chapter 6. 이미지 제조데이터 기반 AI 개발
1. 전기아연도금 제조공장 현장 문제 파악
2. 전기아연도금 제조데이터 준비하기
3. 제조AI 프로그램(CNN)
3.1 제조데이터 경로 지정
3.2 제조데이터 전처리 옵션 설정
3.3 제조데이터 불러오기 및 전처리
3.4 제조AI 모델 생성 및 평가
3.5 제조AI 모델 평가
3.6 제조AI 모델 테스트
4. 전체 소스코드
- Quiz 확인문제
Chapter 7. 소리 제조데이터 기반 AI 개발
1. 도금 제조공장 현장 문제 파악
2. 도금 열풍건조 소리 제조데이터 준비하기
3. 제조AI 프로그램(LSTM)
3.1 소리 제조데이터 살펴보기
3.2 제조데이터 불러오기 및 특징 추출
3.3 제조데이터 전처리
3.4 제조AI 모델 생성
3.5 제조AI 모델 평가
4. 전체 소스코드
- Quiz 확인문제
맺음말
<부록>
부록 A | 교재 실습, 유형별 제조AI데이터셋 정리표
부록 B | KAMP 플랫폼, 실습 제조데이터셋 다운로드 방법
부록 C | Quiz 확인문제 정답 및 해설